Desafíos en el empleo de los medicamentos huérfanos

Autores/as

Palabras clave:

enfermedades raras, producción de medicamentos sin interés comercial, años de vida ajustados por calidad de vida, impresión tridimensional.

Resumen

Las enfermedades raras son aquellas que tienen baja prevalencia y que, por lo tanto, el desarrollo de medicamentos para tratarlas no es rentable para las empresas farmacéuticas debido a la baja demanda. A pesar de que ya se cuenta con diferentes políticas públicas alrededor del mundo para incentivar a las industrias farmacéuticas a investigar estos medicamentos, conocidos como medicamentos huérfanos, su desarrollo conlleva muchas dificultades en las evaluaciones clínicas y el precio final para el público es muy elevado. Si bien en años recientes se ha planteado el uso de tecnología de impresión en 3D para producir estos medicamentos o incluso recurrir a otros medicamentos previamente aprobados para tratar enfermedades raras, existe un historial de mal uso de las legislaciones por parte de las empresas con el fin de generar beneficios comerciales, por lo que estas políticas deben reforzarse para que cumplan su propósito; ayudar a una población muy vulnerable. El objetivo del presente texto es exponer los resultados de una revisión documental sobre el panorama científico y sociopolítico en el que se encuentra el problema de las enfermedades raras y los medicamentos huérfanos, así como las posibles soluciones que se están desplegando para abordarlo. Deriva de un estudio que se desarrolla en el momento actual en la Universidad Autónoma Metropolitana, de Ciudad de México.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ivo Heyerdahl-Viau, Universidad Autónoma Metropolitana, Unidad Xochimilco. Ciudad de México.

Licenciado en Química Farmacéutica Biológica. Asistente de investigación en el Laboratorio de Fármacos Huérfanos.

Citas

1. Abozaid GM, Kerr K, Mcknight A, Al-Omar HA. Criteria to define rare diseases and orphan drugs: a systematic review protocol. BMJ Open [Internet]. 2022 [cited 24/12/2022];12(7):62126. Available from: https://pureadmin.qub.ac.uk/ws/portalfiles/portal/379545026/Orphan.pdf

2. Quirland-Lazo C, Castañeda-Cardona C, Chirveches Calvache MA, Aroca A, Otálora Esteban M, Rosselli D. Modelos de atención en salud en enfermedades raras: revisión sistemática de la literatura. Rev Gerenc y Polít Salud [Internet]. 2018 [citado 02/01/2023];17(34):1-7. Disponible en: http://www.scielo.org.co/pdf/rgps/v17n34/1657-7027-rgps-17-34-00112.pdf

3. Henry D, Lexchin J. The pharmaceutical industry as a medicines provider. The Lancet. [Internet]. 2002. [cited 02/01/2023]; 360(9345):1590-1595. Available from: https://www.sciencedirect.com/science/article/pii/S0140673602115273

4. U.S. Food and Drug Administration. [Internet]. U.S.A: US Department of Health and Human Services; c2018-23 [up-date 13/12/2022 cited 24/12/2022]. Rare Diseases at FDA; [aprox. 2 screen]. Available from: https://www.fda.gov/patients/rare-diseases-fda

5. Gobierno de México [Internet]. México: Secretaría de Salud; 2019 [actualizado 01/03/2019; citado 24/12/2022]. ¿Qué son las enfermedades raras?; [aprox. 2 pantallas]. Disponible en: https://www.gob.mx/salud/articulos/que-son-las-enfermedades-raras-193280

6. Haendel M, Vasilevsky N, Unni D, Bologa C, Harris N, Rehm H, et al. How many rare diseases are there? HHS Public Access. Nat Rev Drug Discov [Internet]. 2020 [cited 25/12/2022];19(2):77–78. Available from: https://www.nature.com/articles/d41573-019-00180-y

7. Vicente E, Pruneda L, Ardanaz E. Paradoja de la rareza: a propósito del porcentaje de población afectada por enfermedades raras. Gac Sanit [Internet]. 2020 [citado 02/01/2023];34(6):536–538. Disponible en: https://www.gacetasanitaria.org/es-pdf-S0213911120300753

8. McNeilly EK. Designating an Orphan Product: Drug and Biological Products-Orphan Drug Regulations: Regulatory History. [Internet]. 2014 [citado 09/02/2023];283745. Disponible en: https://www.fda.gov/industry/medical- products-rare-diseases-and-conditions/designating-orphan-product-drugs-and- biological-products

9. U.S. Food and Drug Administration. [Internet]. U.S.A: US Department of Health and Human Services; c2018-23 [up-date 13/12/2022 cited 24/12/2022]. The Story Behind the Orphan Drug Act; [aprox. 2 screen]. Available from: https://www.fda.gov/industry/fdas-rare-disease-day/story-behind-orphan-drug-act

10. Aranda M, Rosasco MA, Aranda M, Rosasco MA. La farmacia de los medicamentos genéricos. Rev Colomb Ciencias Químico-Farm [Internet]. 2019 [citado 09/02/2023];48(2):357–371. Disponible en: http://www.scielo.org.co/pdf/rccqf/v48n2/0034-7418-rccqf-48-02-357.pdf

11. Ferreira CR. The burden of rare diseases. Am J Med Genet [Internet]. 2019 [cited 03/01/2023]; 179(6), 885-892. Available from: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajmg.a.61124

12. Fontanet Sacristán JM, Torrent-Farnell J. Orphan drugs. Arbor [Internet]. 2018 [cited 03/01/2023];194(789):a466. Available from: https://arbor.revistas.csic.es/index.php/arbor/article/view/2279/3238

13. Deore AB, Dhumane JR, Wagh R, Sonawane R. The Stages of Drug Discovery and Development Process. Asian J Pharm Res Dev. [Internet]. 2019 [cited 03/01/2023];7(6):62–67. Available from: https://www.ajprd.com/index.php/journal/article/view/616

14. Fonseca DA, Amaral I, Pinto AC, Cotrim MD. Orphan drugs: major development challenges at the clinical stage. Drug Discov Today. [Internet]. 2019 [cited 03/01/2023];24(3):867–872. Available from: https://pubmed.ncbi.nlm.nih.gov/30658132/

15. Lanar S, Acquadro C, Seaton J, Savre I, Arnould B. To what degree are orphan drugs patient-centered? A review of the current state of clinical research in rare diseases. Orphanet Journal of Rare Diseases. [Internet]. 2020 [cited 05/01/2023];15(1)1–18. Available from: https://ojrd.biomedcentral.com/articles/10.1186/s13023-020-01400-0

16. Dupont AG, Van Wilder PB. Access to orphan drugs despite poor quality of clinical evidence. Br J Clin Pharmacol [Internet]. 2011 [cited 04/01/2023];71(4):488–496. Available from: https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1365- 2125.2010.03877.x

17. Leache L, Saiz LC, Gutiérrez-Valencia M, Erviti J. Orphan drugs, incentives and uncertainty about their risk-benefit balance. Gac Sanit. [Internet]. 2021 [cited 05/01/2023];35(2)208–9. Available from: https://doi.org/10.1016/j.gaceta.2020.05.012

18. Olajide SE, Lizam M, Olajide EB. Understanding The Conceptual Definitions of Cost, Price, Worth and Value. IOSR J Humanit Soc Sci. [Internet]. 2016 [cited 05/01/2023];21(09):53–57. Available from: https://www.iosrjournals.org/iosr- jhss/papers/Vol.%2021%20Issue9/Version-1/I2109015357.pdf

19. Iecovich E, Carmel S. Differences in Accessibility, Affordability, and Availability (AAA) of Medical Specialists Among Three Age-Groups of Elderly People in Israel. Journal of aging and health [Internet]. 2009 [cited 04/01/2023];21(5). Available from: https://journals.sagepub.com/doi/pdf/10.1177/0898264309333322?casa_token=Ls GkU_YaLtUAAAAA:2kfSiaH99ukzPiyjHc- pHLgGnCzZdnUV2rzF7g9OHAYmNc6FAnN6PFDNFMZSRuLH4agZvAU8YYZaf Q

20. Weerasooriya SU. The impact of orphan drug policies in treating rare diseases. Health Info Libr J [Internet]. 2019 [cited 04/01/2023];36(2):179–84. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/hir.12256

21. Chan A, Chan V, Olsson S, Fan M, Jit M, Health MG-V in, et al. Access and unmet needs of orphan drugs in 194 countries and 6 areas: a global policy review with content analysis. Value in Health [Internet]. 2020 [cited 09/02/2023];23(12):1580- 1591. Available from: https://www.sciencedirect.com/science/article/pii/S1098301520344132

22. Lexchin J, Moroz N. Does an Orphan Drug Policy Make a Difference in Access? A Comparison of Canada and Australia. International Journal of Health Services [Internet]. 2020 [cited 04/01/2023]; 50(2):166-172. Available from: https://journals.sagepub.com/doi/10.1177/0020731419886526?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

23. Wang X, Li S-C, Yue X, Li Y, Shi N, Zhao F-L, et al. Patient Access to Medical Insurance Covered Orphan Drugs in China: Real-World Evidence From Patient Survey. Value Heal Reg Issues [Internet]. 2023 [cited 04/01/2023];34:71–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212109922001959

24. Qiao L, Liu X, Shang J, Zuo W, Xu T, Qu J, et al. Evaluating the national system for rare diseases in China from the point of drug access: progress and challenges. Orphanet J Rare Dis [Internet]. 2022 [cited 04/01/2023];17(1):1–12. Available from: https://ojrd.biomedcentral.com/articles/10.1186/s13023-022-02507- 2

25. Merlini G, Gribben J, Macintyre E, Piggin M, Doeswijk R. Access to Affordable Orphan Medicines in Europe: An EHA Position Paper. HemaSphere [Internet]. 2020 [cited 04/01/2023];4(5):e477. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544271/pdf/hs9-4-e477.pdf

26. Jayasundara K, Hollis A, Krahn M, Mamdani M, Hoch JS, Grootendorst P. Estimating the clinical cost of drug development for orphan versus non-orphan drugs. Orphanet J Rare Dis [Internet]. 2019 [cited 04/01/2023];14(1):1–10. Available from: https://link.springer.com/articles/10.1186/s13023-018-0990-4

27. Haycox A, Noble E. What is health economics? Hayward Medical Communications. [Internet]. 2009 [cited 04/01/2023];1–8. Available from: http://www.bandolier.org.uk/painres/download/whatis/What_is_health_econ.pdf

28. Goldstein DA. Using quality-adjusted life-years in cost-effectiveness analyses: do not throw out the baby or the bathwater. Journal of Oncology Practice [Internet]. 2016 [cited 09/02/2023];12(6):500–502. Available from: https://ascopubs.org/doi/pdfdirect/10.1200/JOP.2016.011460

29. Bakker CH, Rutten-van Mölken M, van Doorslaer E, Bennett K, van der Linden S. Health related utility measurement in rheumatology: an introduction. Patient Educ Couns. [Internet] 1993 [cited 09/02/2023];20(2–3):145–152. Available from: https://doi.org/10.1016/0738-3991(93)90128-J

30. Prieto L, Sacristán JA. Problems and solutions in calculating quality-adjusted life years (QALYs). Health Qual Life Outcomes [Internet]. 2003 [cited 04/01/2023];1:80. Available from: https://doi.org/10.1186/1477-7525-1-80

31. Berdud M, Drummond M, Towse A. Establishing a reasonable price for an orphan drug. Cost Eff Resour Alloc [Internet]. 2020 [cited 04/01/2023];18(1):1–18. Available from: https://doi.org/10.1186/s12962-020-00223-x

32. Harari S. Why we should care about ultra-rare disease. Eur Respir Soc [Internet]. 2016 [cited 10/01/2023];25(140):101-103. Available from: https://err.ersjournals.com/content/errev/25/140/101.full.pdf

33. Chambers JD, Silver MC, Berklein FC, Cohen JT, Neumann PJ. Orphan Drugs Offer Larger Health Gains but Less Favorable Cost-effectiveness than Non- orphan Drugs. J Gen Intern Med [Internet]. 2020 [cited 04/01/2023];35(9):2629– 2665. Available from: https://doi.org/10.1007/s11606-020-05805-2

34. Shahrubudin N, Lee TC, Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. [Internet]. 2019 [cited 04/01/2023];35:1286–1296. Available from: https://doi.org/10.1016/j.promfg.2019.06.089

35. Yan Q, Dong H, Su J, Han J, Song B, Wei Q, et al. A Review of 3D Printing Technology for Medical Applications. Engineering. [Internet]. 2018 [cited 04/01/2023];4(5):729–742. Available from: https://doi.org/10.1016/j.eng.2018.07.021

36. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm [Internet]. 2016 [cited 25/12/2022];42(7):1019–1031. Available from: https://pubmed.ncbi.nlm.nih.gov/26625986/

37. Afsana Jain V, Haider N, Jain K. 3D Printing in Personalized Drug Delivery. Curr Pharm Des. [Internet]. 2019 [cited 25/12/2022];24(42):5062–5071. Available from: http://www.eurekaselect.com/article/96689

38. Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J, Kotta S. 3D Printing in medicine: Technology overview and drug delivery applications. Ann 3D Print Med. [Internet]. 2021 [cited 25/12/2022];4(1-2):100037. Available from: https://www.researchgate.net/publication/356348558_3D_Printing_in_Medicine_Technology_Overview_and_Drug_Delivery_Applications

39. Liang K, Brambilla D, Leroux J-C, Liang K, Brambilla D, Leroux J-C. Is 3D Printing of Pharmaceuticals a Disruptor or Enabler? Adv Mater [Internet]. 2019 [cited 25/12/2022];31(5):1805680. Available from: https://doi.org/10.1002/adma.201805680

40. Beer N, Kaae S, Genina N, Sporrong SK, Alves TL, Hoebert J, et al. Magistral Compounding with 3D Printing: A Promising Way to Achieve Personalized Medicine. Ther Innov Regul Sci [Internet]. 2023 [cited 08/01/2023];57:26–36. Available from: https://doi.org/10.1007/s43441-022-00436-7

41. Vanhoorne V, Peeters E, Van Tongelen I, Boussery K, Wynendaele E, De Spiegeleer B, et al. Pharmaceutical compounding of orphan active ingredients in Belgium: How community and hospital pharmacists can address the needs of patients with rare diseases. Orphanet J Rare Dis [Internet]. 2019 [cited 08/01/2023];14(1). Available from: https://doi.org/10.1186/s13023-019-1154-x

42. Ceballos M, Giraldo JA, Marín VH, Amariles P. Caracterización de aspectos relacionados con la utilización de los medicamentos fiscalizados en droguerías y farmacias-droguerías de Medellín y el Área Metropolitana. Rev. Univ. Ind. Santander. Salud [Internet]. 2018 [citado 08/01/2023];50(1):27–36. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-08072018000100027

43. Gaikwad SS, Kshirsagar SJ. Review on Tablet in Tablet techniques. Beni-Suef Univ J Basic Appl Sci [Internet]. 2020 [cited 08/01/2023];9:1–7. Available from: https://doi.org/10.1186/s43088-019-0027-7

44. Nober C, Manini G, Carlier E, Raquez JM, Benali S, Dubois P, et al. Feasibility study into the potential use of fused-deposition modeling to manufacture 3D- printed enteric capsules in compounding pharmacies. Int J Pharm. [Internet]. 2019 [cited 08/01/2023];569. Available from: https://doi.org/10.1016/j.ijpharm.2019.118581

45. Andreadis LI, Gioumouxouzis CI, Eleftheriadis GK, Fatouros DG. The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing? Pharmaceutics [Internet]. 2022 [cited 08/01/2023];14(3). Available from: https://www.mdpi.com/1999-4923/14/3/609/htm

46. Saydam M, Takka S. Improving the dissolution of a water-insoluble orphan drug through a fused deposition modelling 3-Dimensional printing technology approach. Eur J Pharm Sci. [Internet]. 2020 [cited 08/01/2023];152:105426. Available from: https://doi.org/10.1016/j.ejps.2020.105426

47. Pharmaceutical Technology Editors. Aprecia and Cycle will develop 3D printed orphan drugs [Internet]. República Dominicana: Pharmatech; 2017 [cited 25/12/2022]. Available from: https://www.pharmtech.com/view/aprecia-pharmaceuticals-and-cycle-pharmaceuticals-partner-develop-3d-printed-orphan-drugs

48. Alves VM, Korn D, Pervitsky V, Thieme A, Capuzzi SJ, Baker N, et al. Knowledge- based approaches to drug discovery for rare diseases. Drug Discov Today. [Internet]. 2022 [cited 25/12/2022];27(2):490–502. Available from: https://doi.org/10.1016/j.drudis.2021.10.014

49. Roessler HI, Knoers NVAM, van Haelst MM, van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol Sci. [Internet]. 2021 [cited 25/12/2022];42(4):255-67. Available from: https://doi.org/10.1016/j.tips.2021.01.003

50. Prieto Martínez FD, Arciniega M, Medina Franco JL. Molecular docking: current advances and challenges. TIP [Internet]. 2018 [cited 25/12/2022];21(1):65–87. Available from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 888X2018000321108

51. Delavan B, Roberts R, Huang R, Bao W, Tong W, Liu Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov Today. [Internet]. 2018 [cited 25/12/2022];23(2):382–94. Available from: https://doi.org/10.1016/j.drudis.2017.10.009

52. Bhattacharya S, Das MK, Sarkar S, De A. Hematidrosis. Indian Pediatrics. [Internet]. 2013 [cited 07/01/2023];50:703–704. Available from: https://link.springer.com/content/pdf/10.1007/s13312-013-0178-x.pdf

53. Chua KP, Conti RM. Policy Implications of the Orphan Drug Designation for Remdesivir to Treat COVID-19. JAMA Intern Med [Internet]. 2020 [cited 10/02/2023];180(10):1273–4. Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2769375

54. Postema PG, Schwartz PJ, Arbelo E, Bannenberg WJ, Behr ER, Belhassen B, et al. Continued misuse of orphan drug legislation: a life-threatening risk for mexiletine. Eur Heart J [Internet]. 2020 [cited 11/02/2023];41(5):614–7. Available from: https://doi.org/10.1093/eurheartj/ehaa041

Descargas

Publicado

2023-11-09

Cómo citar

1.
Heyerdahl-Viau I. Desafíos en el empleo de los medicamentos huérfanos. Humanid. méd. [Internet]. 9 de noviembre de 2023 [citado 11 de mayo de 2025];23(3):e2514. Disponible en: https://humanidadesmedicas.sld.cu/index.php/hm/article/view/2514

Número

Sección

Revisión bibliográfica